12 research outputs found

    Microwave Brightness Temperature Characteristics of Three Strong Earthquakes in Sichuan Province, China

    Get PDF
    Passive microwave remote sensing technology is an effective means to identify the thermal anomalies associated with earthquakes due to its penetrating capability through clouds compared with infrared sensors. However, observed microwave brightness temperature is strongly influenced by soil moisture and other surface parameters. In the present article, the segmented threshold method has been proposed to detect anomalous microwave brightness temperature associated with the strong earthquakes occurred in Sichuan province, China, an earthquake-prone area with high soil moisture. The index of microwave radiation anomaly (IMRA) computed by the proposed method is found to enhance prior to the three strong earthquakes, 2008 Wenchuan (M = 7.8), 2013 Lushan (M = 6.6), and 2017 Jiuzhaigou (M = 6.5), occurred during 2008-2018 using the Defense Meteorological Space Program Special Sensor Microwave Imager/Sounder F17 satellite data. Our results show that the microwave brightness temperature anomalies appeared about two months prior to the three strong earthquakes. For the Wenchuan and Lushan earthquakes, the enhanced IMRA distributed along the main fault, which is consistent with the variations of our earlier studies of the 1997 Manyi (M = 7.5) and the 2001 Kokoxili (M = 7.8) earthquakes in the region with low soil moisture. For the Jiuzhaigou earthquake, the anomalies distributed around the epicenter and do not indicate the seismogenic structure, which could be due to the presence of a blind fault. It should be noted that quantitative evaluation of IMRA is limited due to infrequent occurrence of earthquakes

    Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China

    Get PDF
    The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity

    Effects of high pressure and temperature on carbon isotope compositions of some acyclic alkanes and preservation of organic matter

    No full text
    The effects of high pressure and temperature on carbon isotopic compositions of acyclic alkanes and the stability of the acyclic alkanes were experimentally investigated. The pyrolysis of lignite with water in a closed system was conducted at 400-700 degrees C and 1-3 GPa. The carbon isotope data, variations of peak carbon and evident odd-even predominance of acyclic alkanes indicated that: (1) the high pressure retarded the maturation of organic matter and destruction of hydrocarbons, (2) n-C12+ hydrocarbons from biogenic sources could be preserved in the cool slab subducted into the upper mantle, and (3) some organic compounds might preserve the carbon isotope signals inherited from biogenic sources. The results favor tracing the origins of organic matter in mantle rocks and extraterrestrial organic matter in meteorites and the process of deep carbon cycle

    Spatial Variations of Soil Gas Geochemistry in the Tangshan Area of Northern China

    No full text
    The concentrations of Hg, Rn, H2, He and CO2 in soil gases at 756 sites were measured in the Tangshan area where Ms 7.8 earthquake occurred in 1976 and is characterized by complex tectonic structures and high seismic hazard. The results showed that, spatial variations of the gaseous anomalies, especially hydrogen and helium have spatial congruence along the tectonic lines, which can be attributed to their deep sources and the migration paths formed by the faults. A better congruence of radon and carbon dioxide is highlighted which indicates that carbon dioxide acts as the carrier gas for radon in this area. Two geochemical anomaly zones of soil gas were found in the area wherein all the studied gases exhibited anomalies or high values, related to the faults and earthquakes
    corecore